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Modern scientific research produces datasets of increasing size and com-

plexity that require dedicated numerical methods to be processed. In many

cases, the analysis of spectroscopic data involves the denoising of raw data

prior to any further processing. Current efficient denoising algorithms require

the Singular Value Decomposition of a matrix with a size that scales up as

the square of the data length, preventing their use on very large datasets.

Taking advantage of recent progress on random projection and probabilistic

algorithms, we developed a simple and efficient method for the denoising of

very large datasets. Based on the QR decomposition of a matrix randomly

sampled from the data, this approach allows a gain of nearly three orders

of magnitude in processing time compared to classical SVD denoising. This

procedure, called urQRd, strongly reduces the computer memory foot-print

and allows the denoising algorithm to be applied to virtually unlimited data

size.

The efficiency of these new numerical tools is demonstrated on experimental

data from high resolution broad-band FT-ICR mass spectrometry, which has

with applications in proteomics and metabolomics. We show that robust

denoising is achieved in 2D spectra whose interpretation is severely impaired

by scintillation noise. These denoising procedures can be adapted to many
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other data analysis domains where the size and/or the processing time are

crucial.

keywords : denoising | FT-ICR MS | random projection | SVD | big data

abbreviations : FT, Fourier transform; ICR, Ion Cyclotron Resonance; MS, mass

spectrometry; AR, Auto Regressive; SVD, Singular Value Decomposition; rQRd, random

QR denoising; urQRd, uncoiled random QR denoising;

1 Introduction

Big data are becoming predominant in modern science, and found in many scientific

domains: astrophysics [1], large-scale physics experiments [2], biology [3, 4], or even

natural text analysis [5]. This introduces a new challenge for data handling and analysis,

as it requires special processing approaches, which avoid accessing the whole data at

once [6], and make use of adapted algorithms easily parallelized. Such constraints may

be difficult to fulfill, even for simple procedures such as noise reduction.

Every measurement is corrupted by unwanted noise, which is the combination of the

effect of random fluctuations in the sample and the apparatus, but can also originate from

external events like environmental noise. Denoising methods focus mainly on removing

or reducing as much as possible an additive gaussian WSS (Wide Sense Stationary) noise.

For stationary signals the optimal linear denoising filter in the mean-square error sense

is the Wiener filter. However, it suffers from the requirement of a precise estimate of the

signal and noise auto- and cross-correlation functions. Many advanced denoising methods

have been developed using linear algebra, which usually require considerable processing

power. One of the main alternative approach relies on a multi-resolution analysis which

sets apart noise from signal components more efficiently than classical orthogonal basis

methods. In this respect, wavelets associated with soft thresholding have been considered

for denoising purposes [7]. These methods require a priori knowledge about signal and

noise power and are well suited for transient signals but not as much for stationary

processes.

Harmonic signals can be modeled as the sum of damped sinusoids. They are typically

found in spectroscopies like NMR, FT-MS, FT-IR but also in seismology, astrophysics,

genetics, or financial analysis. They are easily analyzed by Fourier transformation if

regularly sampled. For such specific signals, one class of denoising methods is based on

modeling a sum of a fixed number of exponentials as devised by Prony [8]. This was

recently revisited and improved by Beylkin et al [9, 10].

There are also statistical methods related to the Karhunen-Loève transform, which

use adaptive basis instead of a priori basis. Relying on the auto-regressive model (AR)

[11, 12] a Hankel matrix is built and its rank is then reduced to the number of expected

frequencies. Rank reduction by the Singular Value decomposition (SVD) [13] of this

matrix is known as Cadzow’s method [14] also known as SSA [15]. The advantage is that
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no assumption about the noise or signal power is required and the number of frequencies

is the only parameter.

But the benefits of denoising are balanced by several drawbacks. If the assumed

number of frequencies is incorrect, the denoised signal is polluted with spurious artifacts

that are indistinguishable from the real signal. Additionally, the SVD decomposition is

slow and scales in O(mn2) operations. Alternative rapid SVD algorithms can be used,

such as the Lanczos bi-diagonalization method [16,17], the truncated SVD [18] or random

projections [19] as was recently applied in seismology [20]. However, these algorithms do

not solve the artifacts issue.

Capitalizing on recent progress in algebra on random projection and probabilistic al-

gorithms [21–24], we present here a novel efficient approach to denoising which can be

easily applied to the large datasets found in FT-ICR experiments, and more generally,

to any big data analysis. The main driving idea is to avoid explicit computation of data

derived quantities, but rather estimate the needed values, based on a partial sampling

of the data. Extending from previous ideas [19], the denoising algorithm is based on a

subsampling of the data-associated matrix. Here, rather than truncating the rank by

removing some of the components of the SVD decomposition, we compute a randomized

low-rank approximation of the Hankel matrix [24] that retains preferentially more signal

than noise.

We show that this leads to a substantial improvement of the processing in terms of

speed, with little compromise on the quality, allowing gains of two to three orders of

magnitude in processing time and in memory size. Applications of this approach are

demonstrated on the large datasets obtained in FT-ICR Mass Spectrometry.

2 Theory

2.1 Denoising algorithm

We propose here a simplified algorithm based on a random sampling of the transfer

function associated with the matrix viewed as an operator. For large enough samplings,

the data consistency is ensured through a variant of the Johnson-Lindenstrauss lemma

[21,23].

2.2 The AR model and the H matrix

The auto-regressive (AR) model assumes a regularly sampled complex harmonic signal.

For such a signal composed of a sum of P components, each data point Xl can be

expressed as a linear combination of the P preceding data points [11, 12]. This implies

that the Hankel matrix H, built from the data series by copying a shifted version of the

data series on each line:

(Hi,j) = (Xi+j−1) (1)

is rank-limited to P in the absence of noise. In noisy datasets, this matrix becomes

full-rank because of the partial decorrelation of the data points induced by the noise.
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These properties have been used by many signal-improving techniques. Cadzow [14]

proposed to perform the Singular Value Decomposition (SVD) of the matrix H, and

compute a matrix H̃ by truncating to the K largest singular values σk. H̃ is not strictly

Hankel-structured anymore, but a denoised signal X̃ can be reconstructed by taking the

average of all its antidiagonals. (see eq 1)

X̃l = mean
i+j=l+1

(H̃ij) (2)

Unlike linear filtering approaches such as the Wiener filter, the signal is denoised without

making assumptions on the signal line-widths, let alone modifying the line-widths.

2.3 Sampling H on a random set of directions

The matrix H can also be considered as an operator H that concentrates its input

vectors onto the main singular vectors that correspond to correlations in the matrix, and

thus to harmonic components in the series X. Earlier studies [21, 25] have shown that

we can sample H efficiently by observing its effect on a set of random vectors. For a

large enough sampling, the effect of H is essentially captured with an emphasis on the

correlations, therefore taking more from the signal than from the noise. This random

sampling considerably reduces the size of the problem and has already been used in the

analysis of very large datasets [23,26, 27].

From the data vector X of length L, let form the (M ×N) Hankel matrix H using eq

1. Then compute the matrix Y as the product of H by a set of K random unit vectors

handled as a matrix Ω.

Y
(M×K)

= H
(M×N)

Ω
(N×K)

(3)

with M +N − 1 = L and the following relations: K ≤ M and M ≤ N . The matrix Y is

thus much smaller than H. M is chosen at will and called the order of the analysis.

2.4 QR step, approximation

A QR factorization of Y is performed Y = QR with the matrix Q, as a reduced rank

orthonormalized basis of H. From this decomposition the matrix H̃ is built:

H̃ = QQ∗H (4)

H̃ is the projection of H on the reduced rank orthonormalized basis Q and is a rank K
approximation. Unlike the SVD method which gives the low-rank approximate closest to

H in sense of the Frobenius norm [28], the random projection gives less tight bounds on

H recovery. It has been shown [24] that, for a signal containing exactly P components,

this approximation is bound (in term of spectral norm) with a probability larger than

1− 3p−p with p = K − P , to:

���H − H̃
��� ≤

�
1 + 9

√
K
√
M

�
σP+1 (5)

and σP+1 the P + 1 largest singular value of H.
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X̃ is finally rebuilt from H̃ in a step similar to the one performed in the SVD approach.

We propose to call this approach rQRd, standing for random QR denoising.
The approach described here relies heavily on the Hankel structure of the underlying

matrix, built from the AR model. A slightly different expression of this model leads to

Toeplitz matrices which present very similar properties [12].

2.5 Fast Hankel matrix product

The Hankel structure of H implies that applying this matrix to a vector is equivalent to

computing the convolution of the data series with this vector. Thanks to the properties of

the Fast digital Fourier Transform (FFT), fast Hankel matrix product algorithms can be

designed that perform this operation much more rapidly and with a much smaller memory

footprint than direct multiplication [13, 29]. This approach presents a processing cost

proportional to O(L log(L)) rather than O(MN). In the same manner, using fast Hankel

matrix-vector multiplications, the total cost of the product of H with Ω can be reduced

to O(KL log(L)) rather than O(KMN) (recall that K ≤ M ≤ N ≤ L = M +N − 1).
By combining equations (2) and (4) the denoised signal can also be computed from Q

and Q∗H using fast Hankel matrix-vector multiplications. The result of the randomized

algorithm for rank-K approximation is a M ×K matrix Q and a K ×N matrix U that

approximate H from (4) via

Hi,j ≈ H̃i,j =
K�

k=1

Qi,kUk,j (6)

where Q is obtained from the QR decomposition and U = Q∗H (computed again using

the fast Hankel matrix product). It follows from (6) that the sum over the ith antidiagonal

of H̃ expressed for j ranging from j1 = max(i−M + 1, 1) to jm = min(i, N) is:

jm�

j=j1

H̃i−j+1,j =
K�

k=1

jm�

j=j1

Qi−j+1,kUk,j (7)

=
K�

k=1

jm�

j=j1

Q(k)
i,j U

(k)
j (8)

=
K�

k=1

(Q(k)
· U (k))i (9)

Here, Q(k) is the L × N Toeplitz matrix formed from the L + N − 1 long vector

[0, ....0, Qk,1, ..Qk,M , 0, ...., 0] with (N − 1) zeros added on each extremities, U (k) is the

N × 1 vector whose entries are U (k)
j = Uk,j and (Q(k) · U (k)) denotes the matrix-vector

product, which is computed again using a fast algorithm.

Evaluating the right-hand side of (9) requires K fast Toeplitz matrix-vector multiplica-

tions for each i = 1, ..L, for a total cost proportional to KL log(L). It is never necessary

to explicitely express or calculate the matrix H̃, but just to sum over its antidiagonals.
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We gave to this implementation of the rQRd algorithm, the name urQRd standing

for uncoiled random QR denoising. Both algorithms implement the same analytical

procedure but differ only in the implementation details. Only one parameter determines

the computation and should be provided by the user: the rank K of the reduced Hankel

matrix. The order M of the H matrix (see eq 3) can also be adapted, but plays a lesser

role in the outcome of the analysis.

2.6 Implementation

The presented algorithms have been implemented in python, relying on standard math-

ematical libraries, and using the standard optimization performed in these libraries.

The dominant costs of the algorithm are the initial product with a random matrix (eq

(3)) and the final summation over H̃ antidiagonals (eq (9)). Both steps can easily be

distributed over a large number of processors, as all terms of the sums are independent

and do not need any kind of communication, providing an additional gain in speed. This

was not undertaken here, as we are solely using the standard libraries.

The detailed algorithms for fast Hankel matrix product, rQRd and urQRd are pre-

sented in Supp Info S1-S3. The code of the programs of the SVD, rQRd and urQRd

algorithms ad well as the FT-ICR MS datasets are available at http://urqrd.igbmc.fr.

3 Material and Methods

3.1 Processing

All computations were performed on a Macintosh Mac Pro dual Xeon with a total of

12 cores with hyperthreading. The machine was equipped with 32 Gb of memory and

was running MacOsX 10.6.8. Programs are implemented in python version 2.7, using the

numpy/scipy libraries. The standard Enthought distribution EPD 7.3 (Enthought, Inc.

Austin, TX) was used without any modifications. The standard routines available for

SVD, QR and FFT are based on LAPACK and FFTPACK, some of the functions rely

on the multithreaded MKL library (Intel, Inc. Santa Clara, CA ) which insure a partial

parallelization.

Simulations were run on a synthetic dataset generated as follows. In figure 1 a dataset

of 2000 complex points was simulated consisting of 20 lines, of 1.1 Hz width, sampled over

1 second. A white gaussian noise was added for a SNR around 0 dB. In figure 2 a dataset

of 1000 complex points was simulated, consisting of 50 lines in a pattern equivalent to

1. In figure 3 the simulated dataset consisted of 9 lines in a pattern equivalent to 1.

The length of the dataset was varied from 1 000 to 4 096 000 complex points, with values

alternating 2n 1000 and 2n 1400. The parameter M was set to L/4. rQRd, urQRd and

SVD processing were performed with K = 100.
All SNR are expressed in dB as

SNRX = 10 log10
�Xo�

2

�X −Xo�
2

(10)
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where Xo is the original clean dataset and X is the noisy dataset. SNR gains were

computed as the difference of SNR between before and after denoising; also as expressed

as:

SNR gain = SNRX̃ − SNRX (11)

where X̃ is the cleaned dataset.

3.2 FT-ICR-MS experiments

The trypsin digest of Cytochrome C was purchased from LC-Packings and used as re-

ceived. The FT-ICR-MS spectrum was acquired in direct injection at 80 fmol/µl us-

ing positive mode electrospray as an ion source. The spectrum was measured on a

Bruker ApexQE mass spectrometer, operating at 9.45T. Acquisition was performed on

524 288 points, sampled with a 1 MHz spectral width, with an m/z 144-1500 mass range.

This mass spectrum was recorded in 1 scan. The Fourier transform was preceded by a

Hamming apodisation of the dataset, and was computed on 2 Mb points. The modu-

lus of the spectrum is displayed. urQRd processing took 25 minutes with K=1000 and

M=245 760.

The triacylglycerols were extracted from a sample of human plasma (preparation to be

published). The 2D FT-ICR mass spectrum was acquired in the same conditions as the

FT-ICR mass spectrum of cytochrome C, with 2048 × 131 072 data points, with a 1 MHz

spectral width in both dimensions and an m/z 144-1000 mass range, for a total acquisition

time of 2 hours, and a final file size of 2Gb. Fourier transformation was preceded by a

Hamming apodisation, and the dataset was zero-filled once in each dimension. Spectra

are presented in magnitude mode. Between the Fourier transformation in the horizontal

dimension and the vertical dimension, a digital demodulation was applied, in order to

remove the phase rotation introduced by the pulse generator carrier. rQRd processing

was applied after the Fourier transform along axis F2 (horizontal) and before transform

in F1 (vertical). It was applied on each F1 column, with K = 50. Complete rQRd

processing time took 45 minutes.

4 Results

4.1 Effect of rank

Robustness with respect to the rank K used for denoising is an important parameter.

In the classical SVD approach, the rank is set to the number of expected components

present in the signal, as the denoising is optimum at this point. However, this parameter

is usually quite difficult to determine a priori in biophysical experiments, in particular

for FT-ICR MS (see below). It plays a different role in rQRd as exemplified in figures

1 and 2. The algorithm was tested here on a harmonic synthetic dataset presenting a

set of sharp frequencies. While generic enough to present the feature of the method as

general, this dataset presents some analogy with a FT-ICR MS experiment.

Figure 1 presents the effect of the rank on the aspect of the filtered spectrum. As

expected, SVD truncation to rank K of the Hankel matrix produces spectra in which
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nearly exactly K lines can be observed. This leads inevitably to additional spurious lines

when K > P and to missing lines when K < P . In the present case, where the smallest

signals are vanishingly small and remain buried in the noise, spurious peaks appears

even for K = P . In contrast, rQRd does not constrain the rank of the Hankel matrix

as strongly. As a result, the remaining noise is spread evenly across the spectral width,

leading to spectra which appear less distorted.

The quality of denoising is measured as the cartesian distance of the denoised dataset

to the ideal noise-free data used for the simulation. With this measure, expressed as SNR

gains, it can be observed that SVD presents high SNR for small K, whereas rQRd SNR

keeps improving with larger K.

Figure 1: Comparison of the the SNR gain afforded by the denoising methods as a func-

tion of the rank. The computations are performed here on a synthetic complex

2000 points dataset containing 20 frequencies. a) Fourier Transform (FT) of

the initial synthetic dataset composed of 20 lines of varying intensity. b) FT

of the test dataset, with an added Gaussian white noise. SNR of the time-

domain dataset is -0.14 dB. c-e-g) FT of the SVD processed of the synthetic

dataset with with varying K. d-f-h) FT of the rQRd processed of the synthetic

dataset with with varying K. c-d) rQRd and SVD processed of the synthetic

dataset with K = 10 SNR gains: SVD 8.23 dB rQRd 2.91 dB, e-f) idem with

K = 20 SVD 12.00 dB rQRd 5.13 dB. g-h) idem with K = 80 SVD 6.91 dB

rQRd 9.95 dB.
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4.2 Quantitativity

Inspection of the spectra shows that while the peak frequencies are perfectly conserved,

the weak intensities are distorted in a systematic manner, in particular for small values of

K. In many cases, the precision on the signal intensity is as important as on its position.

However, due to the way the rQRd denoising algorithm weights the various components

of the signal in order to separate the signal and the noise, the relative intensity of each

frequency cannot be insured, in particular for signals intensities close to the noise level.

While this effect is important for K ≈ P it tends to weaken for larger K.

Figure 2: Comparison of the the SNR gain afforded by the denoising methods as a func-

tion of the rank. The computations are performed here on a synthetic dataset

of 1000 complex points containing 50 components on increasing intensity in a

pattern similar to figure 1. rQRdn indicates the result obtained when iterating

the rQRd method n times.

Figure 2 presents the evolution of the SNR gain with respect to the rank. While SVD

presents the highest gain for a rank K equal to the number of lines P , rQRd presents a

broad region of high SNR, for K in the range 1.5 P to 4 P .

4.3 Iterations

It is a usual approach to apply a denoising procedure in an iterative manner in order to

improve noise rejection. This can be performed by applying the whole procedure several

times, or by computing several successive multiplications of Ω by H [14, 24]. The first

option prove to be more effective thanks to the combined effect of the two successive

steps: the low rank projection of H (eq 4) and the antidiagonal averaging (eq 2). This

averaging is nearly isometric but brings back the system projected onto a subspace of

dimension K to the original space of dimension M . Thus alternating the independent

steps of antidiagonal averaging and rank reduction allows a strong noise reduction. It is

remarkable that iterating rQRd provides higher SNR in an even broader range of ranks.
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Figure 3: Comparison of the rQRd (bullets) and urQRd (diamonds) denoising ap-

proaches, as well as the SVD approach (crosses), performed here on a synthetic

complex dataset containing 9 frequencies, and processed with K = 100. Top:
processing times for each method. Asymptotic behavior fitted on the graph are

SVD ∼ n2.87 rQRd ∼ n2.15 and urQRd ∼ n1.10. On our machine, the cross-over

between rQRd and urQRd is around 2 000-3 000 complex points. Bottom: de-

noising efficiency, expressed as the SNR gain afforded by the denoising method;

rQRd and urQRd are nearly indistinguishable on this graph.
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4.4 Processing efficiency

Figure 3 presents a comparison of SVD, rQRd and urQRd processing times and efficien-

cies. SVD and rQRd are limited by the amount of computer memory (here 32 Gb), and

stop for datasets larger than ≈ 32 000 and 64 000 points respectively, a limit which is

removed by the urQRd algorithm which does not require large H and H̃ matrices to be

stored in memory. It can be seen that the rQRd algorithm affords important SNR gains,

with values over 20 dB in the case of large datasets. This simulation has been run with

a rank on the order of 10 times the number of expected signals, a conditions which is

favorable to rQRd.

Usually many sources of noise are present in a measurement, and most of them are

actually non-additive (multiplicative or jitter noise due to fluctuations in the apparatus;

scintillation noise due to fluctuation in the object under scrutiny; missing or corrupted

points; etc...). Different types of noise were tested on a synthetic dataset, (Supp Info

figure S5) and it was found that rQRd is efficient in most of these situations.

4.5 Speed

A large processing time improvement for rQRd over SVD is observed in figure 3, with

a speed-up of approximatively ×40 for the largest datasets. This difference can be ex-

plained in two ways. First, the QR factorization step provides a large speed improvement

when compared to the burdensome SVD decomposition. Moreover, the Y matrix on

which it is applied is quite smaller than H in the typical case of a large data measure-

ment in which the number of lines is much smaller than the number of acquired points

(K � L).
Because of the FFT based implementation of the matrix products, urQRd presents an

additional speed improvement, displaying a factor ×25 over rQRd for the 64 000 points

datasets. Moreover, memory requirements are much weaker and figure 3 presents results

for interferograms with up to 4 096 000 complex points.

The observed processing time asymptotic behavior displays the expected trend, with

N2.1 for rQRd and N1.1 for urQRd, to be compared with a dependence in N2.9 for SVD.

urQRd is slower for small datasets because the additional complexity dominates at lower

sizes. Finally, it should be noted that because the FFT algorithm time is not regular on

the vector length, the urQRd processing time reflects this irregularity in figure 3 where

the processed lengths alternates between (2n+3 53) and (2n+3 52 7) (multiples of 1000 and

1400).

4.6 Application to FT-ICR MS

FT-MS measures the frequencies of ions orbiting in an electric (Orbitrap [30]) or magnetic

field (ICR). This is the MS technique with the highest resolution today, with m/∆m
over 1 000 000. FT-MS therefore knows a growing interest, in particular for proteomics,

metabolomics and petroleomics [31, 32]. In these “-omics” studies, a large number of

samples have to be processed rapidly, and the throughput of the processing techniques

is thus a paramount parameter.
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Figure 4: Processing of a single-scan FT-ICR mass spectrum of a trypsin digest of Cy-

tochrome C. The experimental interferogram is 512k points. Bottom orig-

inal spectrum, SNR measured on the m/z 728.8388 peak is 34.1 dB. Top
same spectrum after urQRd processing (K = 1000), SNR measured on the

m/z 728.8388 peak is 64.6 dB. inset) the m/z 728.8388 peak corresponds to

the TGQAPGFSTDANK2+ ion, m/z 678.3821 to YIPGTK+ and m/z 717.9012 to

GEREDLIAYLKK2+. The peak labeled with a star at m/z=686.390, lacking iso-

topic structure, is likely to be an experimental artifact.
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Figure 4 shows a single-scan FT-ICR mass spectrum of a partial tryptic digest of cy-

tochrome C, performed on a 9.4 T mass spectrometer. Because of the tryptic digestion,

the sample contains many different peptides with a large range of masses and concentra-

tions. Moreover, the dynamic range is further extended by the isotopic patterns which

presents high intensity differences between the most and the least statistical probable

isotopomers. As a consequence, the number of signals expected in the spectrum is unpre-

dictable, and depends not only on the sample preparation, but also on the signal-to-noise

ratio of the measure. A higher signal-to-noise ratio can be obtained with an increased

number of scans. However, because of the coupling to a chromatographic system, it is

of great interest to keep the total acquisition time to a minimum, thus improving the

resolution along the chromatographic axis.

The experimental dataset consist in 512 k real points, regularly sampled at 1MHz

which are standard conditions for this spectrometry. The experiment was run here in

one scan, corresponding to a total acquisition time of one second.

In addition to thermal electronic noise, high resolution FT-ICR experiments are char-

acterized by ion cloud instabilities that generate frequency and phase instabilities [33],

which produce a phase noise difficult to reduce with regular approaches. The principle of

the AR model is to extract long-range correlations in the signal by the use of the matrix

H. The order M of the model, which corresponds to the number of lines in H determines

the longest correlations to be analyzed. The largest possible order value was chosen here

so as to smooth out long range fluctuations. The size of datasets required for very high

resolution precludes the use of standard noise reduction approaches, and urQRd seems

to be unequaled here.

4.7 Application to 2D FT-ICR

FT-MS opens itself up to multidimensional techniques [34–36]. The 2D FT-ICR spec-

trometry was introduced as early as 1987 [34], but laboratory use of this promising

technique has been hampered by the amount of data which needs to be stored and pro-

cessed. Only now, with the increased power of computers, can this technology proves

its use in particular in proteomics or metabolomics (see [37] for a recent review). 2D

FT-ICR MS maps the fragmentation patterns of ions in complex samples without prior

ion isolation and affords important structural information. However, fluctuations of the

ion number in the ICR cell is an additional noise source which causes considerable scintil-

lation noise and calls for denoising [38]. Figure 5 presents a 2D FT-ICR mass spectrum

for metabolomics analysis. The Cadzow approach has shown satisfactory results [39],

but is prohibitively costly in terms of computer capacity and computing times. The use

of rQRd resulted in an equivalent denoising quality, albeit at a drastically reduced cost

in processing times. Indeed the computation was carried out within a few hours on a

desktop computer instead of one week on a departmental cluster for the SVD approach.
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Figure 5: 2D IRMPD FT-ICR MS spectrum of triacylglycerols (TAG) extracted from hu-

man plasma showing strong scintillation noise. The dataset is 2k × 128k points.

inset) zoom on the pattern centered at m/z(F1) 845 and m/z(F2) 584 (high-

lighted in pink). The two groups of peaks give the isotopic patterns of lithiated

TAG(16 :0/16 :0/18 :1) at m/z 839.7674 and lithiated TAG(16 :0/18:1/18 :1) at

m/z 865.7831 respectively loosing a palmitic acid (MW 256.2396) and an oleic

acid (MW 282.2553) in order to yield a lithiated diacylglycerol DAG(16:0/18:1)

at m/z 583.5278(33). SNR was measured on the zoomed zone to 22.2 dB and

42.8 dB for the standard and denoised datasets respectively.
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5 Conclusion

An efficient separation between noise and genuine signal is usually associated with the

requirement of a model of the observed phenomenon. However, the choice of an ap-

propriate model is often problematic since slight deviations from the model may lead

to data misinterpretation. This drawback is circumvented here by the use of random

projection that allows the extraction of weak long-range correlations together with the

preservation of some freedom in the data analysis. Based on this approach, we propose

here a robust denoising procedure much faster than classical SVD and easily performed

in a few minutes on a standard desktop computer with data sizes over one million points.

Randomness, in a counterintuitive manner, provides us with a fast and robust approach

to denoising.

The procedure depends depends on a single user parameter K, which is related to

the expected number of frequencies. However, in contrast to SVD, the result of the

denoising procedure is only marginally dependent on this parameter, provided that it

is significantly higher that the number of signals. Iterating the procedure improves the

quality of the denoising and the robustness against the value of K.

The two algorithms, rQRd and urQRd are equivalent in terms of results, but differ in

their implementation and processing speed. We showed that the application of urQRd

denoising procedure on an experimental FT-ICR MS 512k points interferogram allows

a noise reduction of about 30 dB (a factor of 30) in less than an hour on a desktop

computer with a non-optimized implementation. We demonstrated that both methods

are valuable tools in the field of high resolution spectroscopy, where very large datasets

are corrupted by various sources of noise.
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de la Recherche Scientifique, Unité de Service et de Recherche 3290, and Protéomique,
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1 Algorithms

The algorithms for rQRd and urQRd are given here in formal representation.

Algorithm S1 rQRd

given a time series X, rank K and order M , returns X̃ a denoised approximation

of X
Require: X,K,M K ≤ M ≤ length(X)/2
Require: Function Random : n, p �→ Ω � Ω a N (0, 1) n× p matrix

Require: Function QR : A �→ Q,R � the QR decomposition of A
L ← length(X)

N ← L−M + 1

for i ← 1,M j ← 1, N do
Hij ← Xi+j−1 � H is a M ×N matrix

end for
Ω ← Random(N,K)

Y ← HΩ

(Q,R) ← QR(Y )

H̃ ← QQ∗H
for l ← 1, L do

X̃l ← �Hij�i+j=l+1

end for
return X̃

The largest objects stored in memory are the matrices H and H̃. This represents

a memory burden proportional to O(MN) � O(L2
).

The slowest step is the computation of H̃ = QQ∗H in O(KMN) while the compu-

tation of X̃ is in O(LM). This results in a theoretical time dependence in O(KMN +

LM) The initial computation of Y is also non-negligible, but in all cases the compu-

tation of the QR decomposition seems to be negligible in our implementation.
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Algorithm S2 Fast Hankel Matrix product

Require: Function F : fi �→ Fj , � compute Fj the Digital Fourier Transform of fi
function Fhv(X,V )

given a time series X, and a vector V , returns the result of the matrix product

of H by V , where H is the Hankel matrix constructed from X as in Algorithm S1

L ← length(X)

N ← length(V )

W ← { 0, . . . , 0� �� �
M−1 values

, VN , VN−1, . . . , V1} � so that length of W is L

X � ← F(X)

W � ← F(W )

S� ← {X �
1W �

1, . . . , X �
LW �

L}
S ← F−1

(S�
)

R ← {S1, . . . , SL−N}
return R

end function

function Fhm(X,A)

given a time series X, and a matrix A, returns the result of the matrix product

of H by A, where H is the Hankel matrix constructed from X as in Algorithm S1

N,P ← Shape(A)

for p ← 1, P do
A(p) ← {A1,p, . . . , AN,p}
B(p) ← Fhv(X,A(p)

)

end for
return matrix B where Bi,j = B(i)

j � B is a M × P matrix

end function

Function Fhv() is in O(L log(L)) and function Fhm() is in O(NL log(L)).
The Fhm() function can be further optimized by allowing the vector S�

computed

in Fhv() to be stored between each call, rather than recomputed.
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Algorithm S3 urQRd

given a time series X, rank K and order M , returns X̃ a denoised approximation

of X
Require: X,K,M K ≤ M ≤ length(X)/2
Require: Function Random : n, p �→ Ω � a ∼ N (0, 1) n× p matrix

Require: Function QR : A �→ Q,R � the QR decomposition of A
Require: Function Fhv : H,M,X �→ Y
Require: Function Fhm : H,M,A �→ B
L ← length(X)

N ← L−M + 1

Ω ← Random(N,K)

Y ← Fhm(X,Ω)
(Q,R) ← QR(Y )

U ←
�
Fhm(X,Q∗

)
�∗

for k ← 1,K do
Q(k) ← {Q1,k, . . . , QM,k}
U

�(k) ← {Uk,N , Uk,N−1, . . . , Uk,1}
W (k) ← { 0, . . . , 0� �� �

N−1 values

, Q(k)
1 , . . . , Q(k)

M , 0, . . . , 0� �� �
N−1 values

} � W (k)
are of length L+N − 1

Z(k) ← Fhv(W (k), U
�(k)

) � Z(k)
are of length L

end for
Z ←

�K
k=1 Z

(k)

for l ← 1, L do

X̃l ← αlZl with αl =






1/l 1 ≤ l ≤ M

1/M M < l < N

1/(L− l + 1) N ≤ l ≤ L
end for
return X̃

The largest objects stored in memory are the matrices Y , Q and U . This represents

a total memory burden proportional to O(KL).
The slowest step is the loop on K for the computation of X̃ and its processing

time is proportional to O(KL log(L)). The computation of Y and of U are also non-

negligible, but in all cases the computation of the QR decomposition seems to be

negligible in our implementation.
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2 Robustness against varying signal distortion

A synthetic dataset was used to test the robustness of rQRd relatively to various types

of noise. A noise-free signal containing 20 random lines with intensities ranging from 1

to 20, is created and perturbed with a random process. In all cases, the random series

is stationary with a Gaussian distribution, zero mean, and white Fourier Transform.

It is obtained from the numpy.random library. For each realization, the perturbation

level was chosen so that the apparent noise in the Fourier spectrum is approximately

of the same intensity level. rQRd analysis is performed with K = 50.

Signal modifications are as follows:

• additive noise : a random signal is added the noise-free dataset. This is the case

explicitly considered in the theoretical section.

• scintillation noise : the amplitude and the frequency of each signal component

are subject to random variation of their value.

• sampling noise : each point of the series used to sample the theoretical signal is

displaced by a random amount.

• missing points : some randomly chosen points of the signal series are set at 0.0

In all cases, the noise level is such that the SNR of noisy dataset is around 0 dB; except

for the sampling case, where the SNR is 3 dB. All details can be found in the code

deposited on the web site urqrd.igbmc.fr.
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3 Code and Data Deposition

3.1 Data Deposition

The data has been deposited on the site urqrd.igbmc.fr

3.2 Code Deposition

The code has been deposited on the site urqrd.igbmc.fr
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